Parvatibai Chowgule College of Arts and Science
 Autonomous

B.Sc. Semester End Examination, January 2022

Semester: III
Subject: Mathematics

Title: Algebra - I
Duration: 2 Hours
Max Marks: 60

Instructions:

- All Questions are compulsory. However, internal choice is applicable.
- Figures to the right indicate full marks.
- Justify all responses.

1. Answer ANY THREE of the following:

(a) Show that \mathbb{R}^{2} is a group under componentwise addition.
(b) Prove that the intersection of two subgroups is a subgroup.
(c) If $\mathrm{P}=\left\{\sigma \in S_{5}: \sigma\right.$ is an odd permutation $\}$. Then find all the possible orders of the elements of P .
(d) Show that $3 \mathbb{Z}$ is prime ideal in \mathbb{Z} while $6 \mathbb{Z}$ is not.
(e) Let $G=\mathbb{Z}_{2} \oplus \mathbb{Z}_{3}$, Find the elements of G and check if G is cyclic.
2. (A) Answer ANY ONE of the following:
(a) Let $\mathrm{G}=\mathbb{Z}_{32}$, then find all the possible subgroups of G . Further find the generators of the subgroup of order 8 in G.
(b) What do you mean by the centralizer of element 'a' in a group G? Further find the centralizer of $\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$ in $G L(2, \mathbb{R})$.
(B) Suppose that order of $|G|=\mathrm{pq}$, where p and q are prime. Prove that every proper subgroup of G is cyclic.
3. Answer the following questions.

$$
(6+6=12)
$$

(a) Let G be a group and $\mathrm{a} \in \mathrm{G}$ then show that the mapping ϕ_{a} defined as $\phi_{a}(\mathrm{x})=a x a^{-1} \forall x \in \mathrm{G}$, is an isomorphism from G to G .
(b) Let $\sigma=\left[\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 3 & 5 & 4 & 6\end{array}\right]$ and $\beta=\left[\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 1 & 2 & 4 & 3 & 5\end{array}\right]$. Then compute $\sigma^{-1}, \beta \sigma, \sigma \beta$.
4. Answer the following questions.
(a) Let $\mathrm{f}: \mathbb{C} \rightarrow \mathbb{C}$ be given by $f(a+i b)=(2 a-i 2 b) \forall(a+i b) \in \mathbb{C}$. Then show that f is a ring homomorphism and also find the $\operatorname{ker}(\phi)$.
(b) Find the stabilizer and orbit of 3 and 2 in group G where $\mathrm{G}=\{(1),(12)(34),(1234)(56),(13)(24),(1432)(56),(56)(13),(14)(23),(24)(56)\}$
5. Answer any TWO of the following.
(a) Let N be a normal subgroup of G and let H be a subgroup of G . If N is a subroup of H , prove that H / N is a normal subgroup of G / N if and only if H is a normal subgroup of G.
(b) Show that the set of all diagonal matrices of the form $\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]$ such that $\mathrm{a}, \mathrm{b} \in \mathbb{Z}$, is a subring of the ring of all 2 X 2 matrices over \mathbb{Z}.Also describe the elements of $M_{2}(\mathbb{Z})$ that have multiplicative inverse.
(c) Let R be a commutative ring with unity 1 . Prove that $\mathrm{F}=\left\{\mathrm{a} \in R: a^{-1}\right.$ exists if $\left.\mathrm{a} \neq 0\right\} \mathrm{U}\{0,1\}$ is an integral domain. Find the characteristic of $\mathbb{Z} \oplus \mathbb{Z}$ and $M_{2}(3 \mathbb{Z})$.

